:: مقاله مرتبط با : ,

Surveying the Element of Energy Efficiency in Bionic Architecture; Case Study: bionic Buildings




نویسندگان :
مرجان کوزه ساز1، دکتر سید محمد حسین رضوی2، دکتر علی رضا صادقی3، دکتر کوروش مومنی4، دکتر مهدی بهرامپور5،


نویسندگان لاتین :
marjan kosesaz1، seyed mohamad hoseein razavinia2، ALIREZA sadeghi3، 4، 5،
دانشگاه آزاد اسلامی(مسئول)1، پژوهشگر دکتری معماری، واحد گلبهار، دانشگاه آزاد اسلامی، گلبهار، ایران2، دانشیار گروه معماری دانشگاه شیراز3، دانشیار دانشگاه جندی شاپور4، استادیار دانشگاه آزاد رباط کریم5
تعداد صفحات : 21
چکیده :

بازده انرژی در ساختمان‌های بیونیک و معماری سبز بیونیک ابزارهای مهمّی برای حصول اطمینان از ایجاد هماهنگی بین ساختمان‌ها و محیط طبیعی، حفظ تعادل بوم‌شناختی و دستیابی به توسعه پایدار در احداث ساختمان‌ها هستند. بر اساس یک بازبینی درباره فناوری‌های بیونیک برای کارکردها، سازه‌ها و مصالح ساختمانی، در مطالعه حاضر کاربردها و حالات متعارفِ بازده انرژی در ساختمان ‌های بیونیک و معماری سبز بیونیک تحلیل می‌شود. علاوه بر این، فناوری ساختمانی غیرفعال با استفاده از منابع انرژی خورشیدی نه تنها می‌تواند کیفیت محیط گرمایی درون ساختمان را بهبود دهد بلکه مصرف انرژی را نیز در ساختمان کاهش می‌دهد. با الهام از خواص مکانیکی، روابط ساختاری و عملکرد مصالح طبیعی و استفاده از آن در سازه ساختمان یا طراحی شکل آن، سازه‌های بزرگ مانند کابل‌های آویزان و سازه‌های دارای پوسته نازک که به ترتیب شبیه به تار عنکبوت و پوسته تخم مرغ هستند، طراحی‌ شده‌اند تا بازدهی منابع ساختمانی بهبود داده شود. به طورخلاصه، توسعه معماری سبز بیونیک و بازده انرژی در ساختمان ‌های بیونیک باید از قوانین طبیعت پیروی کند و به آن ها احترام بگذارد. مطالعه سازوکارهای به کار رفته در سیستم‌های زیست‌شناختی ضروری است که همراه با فناوری‌های ساختمانی جدید باید به کار گرفته شوند تا از نوآوری در ساختمان‌-سازی پشتیبانی کنند و توسعه سریع در ساخت ساختمان‌های سبز و بازدهی انرژی در ساختمان‌ها محقّق شود.



چکیده انگلیسی :

Energy Efficiency in bionic Buildings and Green Architecture bionic are important tools to ensure coordination between buildings and the natural environment, maintaining ecological balance and achieving sustainable development in the construction of buildings. According to a review of bionic technologies for the functions, structures and construction materials, the present study analyzes applications and forms of energy efficiency in the bionic buildings and green architecture of For instance, by exploiting the nature of nature in buildings, based on the ideal natural ventilation system, which exists in the termites " s den, innovations in architecture have been made. In addition, the passive construction technology using solar energy sources can not only improve the quality of the thermal environment within the building, but also reduces energy consumption in the building. Inspired by the mechanical properties, structural relations and the function of natural materials and its use in the structure of the building or its shape design, large structures such as cables and structures with thin shells, resembling spider webs and eggs, are designed. In short, the development of green architecture and energy efficiency in the bionic buildings should follow the laws of nature and respect them. The study of mechanisms used in biological systems is necessary, coupled with new building technologies, to support innovation in building and to develop rapid development in building green buildings and energy efficiency in buildings.



موضوع : معماری
کلمات کلیدی : معماری بیونیک، بازدهی انرژی، معماری سبز.
کلمات کلیدی انگلیسی: bionic Energy Efficiency, Green Architecture.
مراجع :
1. Zhang Y, Mo J, Cheng R. Developing a sustainable indoor air environment: problems, considerations and suggestions (in China). Chin Sci Bull 2015 2. Glass J, Dainty ARJ, Gibb AGF. New build: materials, techniques, skills and innovation. Energy Policy 2008; 36(12):4534–8. 3. Pérez-Lombard L, Ortiz J, Pout C. A review on buildings energy consumption information. Energy Build 2008; 40(3):394–8. 4. Omer AM. Renewable building energy systems and passive human comfort solutions. Renew Sustain Energy Rev 2008;12(6):1562–87. 5. Zari Maibritt Pedersen. Ecosystem services analysis for the design of regenerative built environments. Build Res Inf 2012;40(1):54–64. 6. Gabrijelčič P. Energy and building aesthetics. Slovenian examples of good practice Energy Build 2015;115:36–46. 7. Hu W, Zhang H. Method of bionic arcology design. Archit Tech 2008(11):106–9 8. Dai Z, Yang Z, XiongW. Ideation analyze for architecture creation: ecology bionicsBeijing: China Planning Press; 2006. p. 274. 9. Lu Y. Significance and progress of bionics. J Bionics Eng 2004;1(1):1–3. 10. Lebedew JS. Architektur und bonik. Berlin: Veb Verlag Fur Bauwesen; 1983. p. 7 11. Guo R, Hua J, Hui C. et al. Natural ventilation technology from architectural bionics. In: Proceedings of the 9th international conference on green building and building energy conservation; Beijing in China;1-6; 2013. 12. Reddi S, Jain AK, Yun HB, et al. Biomimetics of stabilized earth construction: challenges and opportunities. Energy Build 2012;55:452–8. 13. Knippers J, Speck T. Design and construction principles in nature and architecture. bioinspiration & Biomimetics 2012;7(1):15002. 14. Fratzl P. Biomimetic materials research: what can we really learn from nature's structural materials?. J R Soc Interface 2007;4(15):637–42. 15. Gruber P. Biomimetics in architecture – architecture of life and buildings. Berlin Heidelberg: Springer; 2011. p. 127–48. 16. Lv C, Yan Q. Types and tendency of bionic building. Art Panor 2007(10):80–1. 17. Vincent JFV, Bogatyreva OA, Bogatyrev NR, et al. Biomimetics: its practice and theory. J R Soc Interface 2006;3(9):471–82. 18. El-Zeiny RMA. Biomimicry as a problem solving methodology in interior architecture. Procedia- Soc Behav Sci 2012;50:502–12. 19. Ehleringer J, Forseth I. Solar tracking by plants. Science 1980;210(4474):1094–8 20. Vullev VI. From biomimesis to bioinspiration: What's the benefit for solar energy conversion applications?. J Phys Chem Lett 2011;2(5):503–8. 21. Mooney HA, Ehleringer JR. The carbon gain benefits of solar tracking in a desertannual. Plant, Cell Environ 1978;1(4):307–11. 22. Speck T, Burgert I. Plant stems: functional design and mechanics. Annu Rev Mater Res 2011;41:169–93. 23. Sun F, Yin B, Li J. Interpretation of bonics and solar energy utilization in architecture. Huazhong Archit 2008;26(3):60–2. 24. Yang Y, Liu Z, Hu B, et al. Bionic composite material simulating the optical spectra of plant leaves. J Bionic Eng 2010;7:S43–S49. 25. Toy M. Tr-Hamzah-And-Yeang architects hitechniaga-tower in kuala-lumpur, Mbf-tower in Penang, and Menara-umno in Pulau-Pinang, Malaysia and China tower, Hainan. China Archit Des 1995(116):66–77. 26. Wang JL. Biomimicry•kinetics•sustainability-study on kinetic building envelopes based on biological acclimatization. Tianjin University; 2011. 27. Pearce M. CH2: the aesthetics and physiology of melbourne city council's green office brock. Eco-City Green Build 2012(03):66–73. 28. Chung TY. A study on the integrated sustainable design characteristics of the melbourne city council house 2. J Archit Inst Korea Plan Des 2015;31(4):79–86. 29. Turner JS, Soar RC. Beyond biomimicry: What termites can tell us about realizing the living building? In: Proceedings of the First International Conference on Industrialized, Intelligent Construction (I3CON), Loughborough University; 2008. 30. Mando A, Stroosnijder L, Brussaar L. Effects of termites on infiltration into crusted soil. Geoderma 1996;74(1–2):107–13. 31. [Abensperg MT. Seasonal changes in activity of subterranean termite species (Isoptera) in Western Australian wheat belt habitats. Aust J Ecol 1991;16(3):331–6. 32. Turner JS. Ventilation and thermal constancy of a colony of a southern African termite (Odontotermes transvaalensis: Macrotermitinae). J Arid Environ 1994;28(3):231–48. 33. John RJ, Berhan , et al. The challenge of biomimetic design for carbon-neutral buildings using termite engineering. Insect Sci 2010;17(2):154–62. 34. Zhao J, Xu Y. Ecological Wisdom inspired from termite Mounds—analysis on Biomimetric design of Zimbabwe Eastgate center. Build Sci 2010;26(2):19–23. 35. Jacklyn PM. “Magnetic” termite mound surfaces are oriented to suit wind and shade conditions. Oecologia 1992;91(3):385–95. 36. Lv D. High-rise building bioclimate - Ken Yeang's design theory research. New Archit 1999(4):72–5. 37. Yeang K. The skyscraper bioclimatically considered — a design primer. Boston: National Book Network, INC; 1996. 38. Su Y. Applications of passive air cooling technology in buildings: Passive air cooling technology, bionics and application in architecture. Huazhong Archit 2010. 39. Yang H. Application of the cooling system by natural ventilation to building: practice of energy saving technique at the campus building of the primary school attached to Beijing University. Archit J 2008(03):18–22. 40. Callebaut V. (edited byWu H, translated by Xia J). Bionic arch, a sustainable tower. Modern Decoration; (3):72-75; 2012. 41. Seely K. Fog basking by the namib desert beetle onymacris unguicularis. Nature 1976;262:284–5. 42. Lei Z, Michael CB, Fevzi CC, et al. Patterned superhydrophobic surfaces: toward a synthetic mimic of the namib desert beetle. Letters 2006;6(6):1213–7. 43. Lei Z, Michael CB, Fevzi CC, et al. Patterned superhydrophobic surfaces: to synthetic mimic of the namib desert beetle. Letters 2006;6(6):1213–7. 44. Knight W. Beetle fog-catcher inspires engineers. New Sci 2001;13:38. 45. Harat B, Hushan B. Biomimetics: lessons from nature – an overview. Philo R Soc A 2009;367:1445–86. 46. Zheng Y, Bai H, Huang Z, et al. Directional water collection on wetted spid Nature 2010;463(7281):640–3. 47. Zari MP Biomimetic approaches to architectural design for increased sustability. SB07 New Zealand, Paper number: 033. 48. Hickman Cleveland P. Zoology. Beijing: Science Press; 1988. p. 629. 49. Chen P, Mckittrick J, Meyers MA. Biological materials: functional adaptati bioinspired designs. Prog Mater Sci 2012;57(8):1492–704. 50. Wang L. Study on shape generation and spatial characteristics in bionic-st architecture. Chongqing University; 2008. 51. Zhao J, Zhao X, Jiang Z, et al. Biomimetic and bioinspired membranes: preparation and application. Prog Polym Sci 2014;39(9):1668–720. 52. Li G, Wu Y, Li B. From epidermis to chamber apparatus: interpretation of the 53. ecological strategy of three foreign buildings. Archit J 2004(03):51–3. 54. Yu K, Fan T, Lou S, et al. Biomimetic optical materials: integration of nature's design for manipulation of light. Prog Mater Sci 2013;58(6):825–73. 55. Allen HG. Analysis and design of structural sandwich panels. Oxford: Pergamon Press; 1969. 56. Das S, Bhowmick M, Chattopadhyay SK, et al. Application of biomimicry in textiles. Curr Sci 2015;109(5):893–901. 57. Peter F. Biomimetic materials research: what can we really learn from nature's structural materials?. J R Soc Interface 2007;4(15):637–42. 58. Sadineni SB, Madala S, Boehm RF. Passive building energy savings: a review of building envelope components. Renew Sustain Energy Rev 2011;15(8):3617–31 59. Oral G, Yilmaz Z. Building form for cold climate zones related to building envelope from heating energy conservation point of view. Energy Build 2003;35(4):383–8 60. Davies M. A wall for all seasons. RIBA 1981;88(2):55–7. 61. Ji J, Luo C, SunW, et al. An improved approach for the application of Trombe wal system to building construction with selective thermo-insulation façades. Chin Sc 62. Bull 2009;54(11):1949–56. 63. Zalewski L, Chantant M, Lassue S, et al. Experimental thermal study of a solar wal of composite type. Energy Build 1997;25(1):7–18. 64. Sharma AKSK, Bansal NK, Sodha MS, et al. Vary-therm wall for cooling/heating o buildings in composite climate. Int J Energy Res 1989;13(6):733–9. 65. Zhao L, Ma J,Wang T, et al. Lightweight design of mechanical structures based on structural bionic methodology. J Bionic Eng 2010;7(Suppl):S224–S231. 66. Helms M, Vattam SS, Goel AK. Biologically inspired design: Processs and product. Des Stud 2009;30(5):606–22. 67. Markus M, Thomas S, Olga S, Thomas S, Heinrich P. Biomimetics and technicaltextiles: solving engineering problems with the help of nature's wisdom. Am J Bot 2006 68. Gebeshuber IC, Aumayr M, Hekele O, et al. Bacilli, green algae, diatoms and red blood cells – how nanobiotechnological research inspires architecture. Bio Inspired Nanomater Nanotechnol (Tentat Title) 2009:148.
تعداد بازدید از مقاله : 1025
تعداد دانلود فایل : 105

سایر شماره ها

دوره بهار 1403 (شماره 12) دوره زمستان 1402 (شماره 11) دوره پاییز 1402 (شماره 10) دوره تابستان 1402 (شماره 9) دوره بهار 1402 (شماره 8) دوره زمستان 1401 (شماره 7) دوره پاییز 1401 (شماره 6) دوره تابستان 1401 (شماره 5) دوره بهار 1401 (شماره 4) دوره زمستان 1400 (شماره 3) دوره پاییز 1400 (شماره 2) دوره تابستان 1400 (شماره 1)

مقالات پر بازدید